Electrification

Imagine we are in 2030. Electrification of land-based personal transportation globally is racing to 50 percent, as trucks and freight trains near 20 percent. The 2030 electric vehicle fleets include bikes, cars, buses and passenger trains. The vehicles are sometimes autonomous. Ridesharing is much more common than today. These vehicles vary in their performance characteristics, particularly in their range. Affordable and plentiful clean electricity powers these vehicles to meet stringent policy requirements worldwide. Recharging happens at home, at work, at charging stations in shopping lots and gas stations. The speed of charging has improved significantly, ensuring that high daily mileage—like those of long and short haul trucks—can happen with ease.
Several critical challenges need to be addressed to enable this future.
Scaling the grid for charging
Charging will place significantly higher energy and power demands on the grid. Managing this will require coordination of charging in transmission and distribution grids to ensure reliability and efficiency. Coordination is difficult because it requires mediating between the goals of multiple market participants while incorporating physical power network and cyber communication network constraints. Particular importance needs to be paid to economic signals that inform buyers, sellers and system operators of local grid conditions. Dynamic and granular pricing in distribution networks could provide such a signal. Given the expected growth in charging, alternative system designs such as DC power distribution networks could prove to be economically viable.
Some key questions on scaling:
• Can we quantify the grid impact of future charging demand?
• How can we design a simple and efficient signaling mechanism?
• Can we create a scalable strategy for reliable coordination?
• What are some alternatives when planning future transmission and distribution systems?